Distance-dependent, pair potential for protein folding: results from linear optimization.

نویسندگان

  • D Tobi
  • R Elber
چکیده

The results of an optimization of a folding potential are reported. The complete energy function is modeled as a sum of pairwise interactions with a flexible functional form. The relevant distance between two amino acids (2 - 9 A) is divided into 13 intervals, and the energy of each interval is optimized independently. We show, in accord with a previous publication (Tobi et al., Proteins 2000;40:71-85) that it is impossible to find a pair potential with the above flexible form that recognizes all native folds. Nevertheless, a potential that rates correctly a subset of the decoy structures was constructed and optimized. The resulting potential is compared with a distance-dependent statistical potential of Bahar and Jernigan. It is further tested against decoy structures that were created in the Levitt's group. On average, the new potential places native shapes lower in energy and provides higher Z scores than other potentials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Side-Chain Orientation Dependent Potential Derived from Random-Walk Reference State for Protein Fold Selection and Structure Prediction

BACKGROUND An accurate potential function is essential to attack protein folding and structure prediction problems. The key to developing efficient knowledge-based potential functions is to design reference states that can appropriately counteract generic interactions. The reference states of many knowledge-based distance-dependent atomic potential functions were derived from non-interacting pa...

متن کامل

On Design of Optimal Nonlinear Kernel Potential Function for Protein Folding and Protein Design

Potential functions are critical for computational studies of protein structure prediction, folding, and sequence design. A class of widely used potentials for coarse grained models of proteins are contact potentials in the form of weighted linear sum of pairwise contacts. However, these potentials have been shown to be unsuitable choices because they cannot stabilize native proteins against a ...

متن کامل

Physicochemical Position-Dependent Properties in the Protein Secondary Structures

Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...

متن کامل

Temperature-Dependent Dispersion Coefficients of Alkali Metals Using Equation of State

In this study, a temperature-dependent of the dispersion coefficients is calculated from equation state.The Lennard-Jones LJ (12-6-3) effective pair potential function and simple thermodynamic argumentwith the input PVT data of liquid metals are used to calculate the dispersion coefficients. The dispersioncoefficients ( , , ) 3 6 12 C C C are found to be a linear function of 1/T1+α , where T is...

متن کامل

Energy Study at Different Temperatures for Active Site of Azurin in Water, Ethanol, Methanol and Gas Phase by Monte Carlo Simulations

The interaction between the solute and the solsent molecules play a crucial role in understanding the various molecular processes involved in chemistry and biochemistry, so in this work the potential energy of active site of azurin have been calculated in solvent by the Monte Carlo simulation. In this paper we present quantitative results of Monte Carlo calculations of potential energies of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 41 1  شماره 

صفحات  -

تاریخ انتشار 2000